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Abstract. Controlling the transition between the low (nucleate) and high temperature (film) regimes of
boiling is a serious challenge for a number of technological applications. Based on the theoretical analysis
of a simplified reaction-diffusion model, it has recently been shown [A. Pumir, V.V. Barelko, Chaos 12,
610 (2002)] that the transition towards the dangerous situation where the high temperature phase tends
to invade the whole system requires a higher power in a periodically spatially modulated system than
in an homogeneous system. We show here that the transition mechanisms between the various boiling
regimes depend on the ratio between the periodicity length along the wire and the characteristic thermal
diffusion length. We analyse theoretically a simple experimental setup aimed at testing these ideas. The
heater consists of a thin wire, with an applied electric current, with alternatively low resistance and high
resistance sections. We determine the gain in stability for a set of realistic values of the parameters.

PACS. 64.70.Fx Liquid-vapor transitions – 05.45.-a Nonlinear dynamics and chaos

1 Introduction

In several key industrial processes, involving heat-
generating elements (HGE), the boiling crisis, or transi-
tion between a low-temperature and a high-temperature
regimes [1], represents a very significant safety concern.
In the low temperature regime, known as the nucleate
regime, the heat released from the HGE leads to the pro-
duction of small vapor bubbles, which are driven away
from the heater. These bubbles carry away heat very effi-
ciently, thus maintaining the temperature at a relatively
low value. On the other hand, at high temperature, one
observes the so-called film regime, corresponding to a solid
covered by a thin film of vapour, with a low heat conduc-
tivity. As a result, the heat generated remains in the close
neighborhood of the HGE, and the resulting temperature
rises to very high values, which may lead to the melt-down
of the HGE, with possibly dire consequences. This is a very
serious problem, in particular for nuclear reactors.

Despite these important technological implications,
the physics governing the boiling crisis remains uncom-
pletely understood. How heat is carried away from the
HGE depends on subtle processes involving nucleation
and growth of vapour bubbles. We use here a very sim-
plified model, based on a description of the temperature
of the HGE which reduces the complexity of the heat
transfer rate from the HGE, q−, to a function of the tem-
perature of the HGE. Such a description in terms of a
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reaction-diffusion model has been used to describe semi-
quantitatively a number of phenomena [2–5]. The heat
production term, q+, is the control parameter. Over a
range of values of q+, the model is bistable, with a low tem-
perature (nucleate boiling) and a high temperature (film
boiling) fixed point. In an extended system, there exists a
critical value of q+, qc, above (below) which a front sepa-
rating the low from the high-temperature phases will tend
to invade the low (high) temperature phase. The front ve-
locity simply goes through 0 at q+ = qc. Based on this
observation, the nucleate boiling film is stable provided
q+ ≤ qc, unstable otherwise.

The way to increase the heat input, q+, of the wire,
put forward in [6], consists in introducing a spatial mod-
ulation of the HGE. Theoretically, it is known that in a
system with periodic modulations, fronts separating the
two phases have a zero velocity over a range of control
parameters [7], see also [8–10]. By alternating periodically
active and passive elements, respectively generating much
heat, and little or no heat, the front solutions separating
the low (nucleate boiling) and high (film boiling) temper-
ature phases stall over a finite interval of values of q+:
q+,n ≤ q+ ≤ q+,f .

The theoretical analysis of the resulting system reveals
that two characteristic length scales are involved in this
problem: the typical length of the active and passive parts
of the HGE, l, on one hand, and the diffusion length scale
for temperature, LT , on the other hand. The problem was
investigated in [6] mostly in the case where LT � l.
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In this paper, we propose a possible experimental re-
alisation of the ideas put forward in [6]. The experimental
system consists of a wire, alternating pieces of metals with
very different conductivity: copper with a low resistance,
and an nickel-chromium alloy, with a much higher resis-
tance. Heat is produced by the Joule effect, induced by
an electric current. Realistic values of LT for this system
are quite small. In practice, any experimental setup would
correspond to the case where LT � l. We therefore recon-
sider the problem in this limit, and based on our simple
model, we compute the range of values of q+ over which
a front separating a high and a low temperature phase
stalls.

In Section 2, we present briefly the theoretical model,
and its experimental realisation. The theoretical analysis
of the possible transition regimes, as well as the results
concerning the stability limits of the system are shown in
Section 3. Our concluding remarks are presented in Sec-
tion 4.

2 Model problem

2.1 Formulation of the problem

Assuming that the rate of heat removal from the HGE
is a simple function of temperature, the equation of evo-
lution for the temperature, T (x, t), along a wire in a 1-
dimensional geometry is derived from a simple energy bal-
ance argument:

cρ
∂T

∂t
= λ

∂2T

∂x2
+ (q+ − q−) (1)

where c is the heat capacity of the wire, ρ its density, λ
its thermal conductivity and d its diameter.

In the film boiling regime, the heat removal rate is
proportional to the difference between the temperature
of the HGE, T , and the temperature of the fluid far
away, T0: q− = h(T ) (T − T0). The proportionality con-
stant, h, depends on the precise nature of the boiling
phase: hn ≈ 3 W cm−3 K−1 in the nucleate phase, and
hf ≈ 0.3 W K−1 cm−3 in the film regime. The transition
between the two regimes occurs at a temperature T ∗ of or-
der 120–130 ◦C. As in [6], we simply use an interpolation
of h in the following from:

h(T ) = [hf + (hn − hf )/(1 + (T/T ∗)p)] (2)

where p is a large number (we take here p = 10).
With a current I flowing through a wire of resistivity

r and diameter d, the power released per unit length of
wire is:

q+ = I2 4r

cρπd2
(3)

where r, c, ρ and d are the local values of the resistivity,
heat capacity, density and diameter of the wire.

Dividing equation (1) throughout by (cρ), one obtains:

∂T

∂t
= D

∂2T

∂x2
+ (Q+ − Q−) (4)

where D = λ/(cρ) is the diffusion coefficient, Q+ = I2×A,
where A = 4r/(cρπd2) and Q− = (T − T0) × [αf + (αn −
αf )/(1 + (T/T ∗)p)], with αf,n = hf,n/(cρ).

In a wire of diameter d = 0.01 cm, consisting of sev-
eral materials, the values of the constants A, D, αn and
αf vary along the wire. In the case of copper, ACu ≈
74 K A−2 s−1, DCu ≈ 1.2 cm2 s−1, whereas in the case
of a nickel-chromium alloy, ANiCr ≈ 4800 K A−2s−1 and
DNiCr = 0.17 cm2 s−1. The values of αn,f barely depend
on the precise metal, so we will simply take: αn ≈ 330 s−1

and αf ≈ 30 s−1. Because of its much higher resis-
tivity, the nickel-chromium alloy generates significantly
more heat than copper. By alternating pieces of nickel-
chromium (of size la) and of copper (of size li), one obtains
a system which acts as a first approximation as the system
studied in [6]. The system is then effectively described by:

∂T

∂t
=

∂

∂x

(
D(x)

∂T

∂x

)
+(A(x) I2 − Q−) (5)

when A(x) = ANiCr and D(x) = DNiCr (respectively ACu

and DCu) depending on the nature of the metal at loca-
tion x.

For the problem considered here, the values of α and
D allow us to construct a diffusive length scale, LT =
(D/α)1/2. This length is estimated to be no larger than
1 mm. In practice, it is difficult to design an experiment
with wires of sizes (la, li) significantly smaller than LT .
This practical considerations suggests us to study the
problem in the range of parameters li, la � LT .

The particular case of an homogeneous system, where
A(x) = ANiCr is independent of x, is well-understood. The
function Q−(T ) has the familiar inverted N -shape. For a
range of values of Q+ = ANiCrI

2, the system has 3 roots,
the largest and the smallest being stable, the intermedi-
ate one being unstable. Fronts separating the two stable
values propagate with a velocity that vanishes at one par-
ticular value of Q+, which is determined by the Maxwell
construction. For Q+ < Q+,c, with Q+,c ≈ 11 340 K s−1

(corresponding to a current Ic ≈ 1.54 A with the numeri-
cal values chosen here), the nucleate boiling state prevails,
whereas for Q+ > Q+,c, the film boiling state is observed.

A temperature dependent voltage difference is known
to occur at the junction between two metals. The effect
is weak, at most of the order of 1 mV, which is negligi-
ble compared to the voltage drop along ∼1 mm of nickel-
chromium wire (diameter d = 0.1 mm), with a current of
∼1 A running through it. In the rest of this paper, the
voltage drop at the junction is neglected.

The choice of the 1-dimensional geometry is relevant
to the important applications we have in mind. New in-
teresting effects are expected in higher dimensions [11].

2.2 Numerical methods

To investigate the model problem, we have solve equa-
tion (4) using a straightforward Crank-Nicholson algo-
rithm, second order in space and time and inconditionally
stable [12]. The typical mesh size used in the calculations
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Fig. 1. Proposed experimental setup to investigate the effects described in this work. A current runs through a heating wire,
made of alternatively Ni-Cr alloy (active part) and Cu segments. The temperature of the fluid away from the heater is regulated.

is typically of the order of ∆x = 10−2 mm; the time step
is taken to be ∆t = 10−3 s or less. These values ensure
that the numerical results presented in this work remain
unchanged when the mesh size and/or the time step are
divided by 2, as we checked.

The numerical calculations carried out in this work
correspond to a very long wire, of at least ∼200 period-
icity lengths, with initially half of the system in the high
temperature phase, the other half in the low temperature
phase. No-flux (Neumann) boundary conditions are ap-
plied at the ends of the wire. The subsequent evolution
of the system may lead to the invasion of the system by
either of the two phases (low, high temperature), or to
a steady front separating two distinct regions in the two
different (low, high temperature) phases. This allows us
to determine the phase diagrams, presented and discussed
in this article.

2.3 Possible experimental realisation

Figure 1 illustrates our proposed experimental setup,
aimed at studying the ideas developed in this article. The
total wire has a length L = 1 m, and consists of alterna-
tively active (Ni-Cr alloys) and inactive (Cu) zones.

The wire model is placed in a transparent body, in or-
der to visualize the thermal state of the HGE. Water is
circulated by a pump and the heat produced by the HGE
is removed by an exchanger-cooler. The thermal energy
is produced by the Joule effect. The voltage applied may
reach up to 24 V. In addition, local disturbances of the
system may be applied, by using an air stream. Experi-
mental results will be reported in a separate publication.
Note that the interaction with the exchange cooler is not
taken into account in the theoretical model studied here.

3 Results

In this section, we study the transition from nucleate to
film boiling in the setup described above. Our calculations
have been carried out by assuming a temperature of the
fluid away from the heat source, T0, to be at 20 ◦C, while
the temperature where the transition from film to nucleate
boiling is assumed to be at 120 ◦C.

3.1 Influence of the periodicity length

In the spirit of [6] we begin by considering the case of a
system with la = li = l0. Figure 2a shows as a function of
l0 the two values of the current, above which film boiling
prevails (upper curve) and below which nucleate boiling is
observed (lower curve). In between the two curves, fronts
separating regions at high temperature (film boiling) with
regions at low temperature (nucleate boiling) stall. The
same data is reploted as a function of 1/l0, Figure 2b. At
large values of 1/l0, Figure 2b is very reminiscent of Fig-
ure 2 of [6], where the influence of the diffusion coefficient
was considered over the stability of the system. In fact,
elementary considerations show that changing l0 → µl0 at
a fixed value of D is equivalent to changing D → µ−2D
at fixed l0. As a result, diminishing l0 at a fixed value of
D, as done here, amounts to increasing D at a fixed value
of l0, as in [6].

In the case of small value of l0, the system behaves al-
most as an homogeneous system, which generates (ACu +
ANiCr) I2/2 per unit length. With the precise numerical
values chosen here for the calculation of q−, the critical
value of the current for a strictly homogeneous system
is found to be: I0 = 2.157 A corresponding to the hori-
zontal dotted-dashed line shown in Figure 2b. This well
understood regime, see [6], is in practice very difficult to
observe experimentally, since the values of l0 are in fact
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Fig. 2. Dependence of the currents limiting boiling regime (up-
per curve) and nucleate boiling (lower curve) in a system where
la = li = l0, as a function of the length l0 (upper figure, a) and
of l−1

0 (lower figure, b)

smaller than ∼1 mm. The case of large values of l0 is more
relevant for applications.

Figure 2a shows that when l0 becomes very large, the
range of current where one observes stalled fronts sepa-
rating the high and low temperature phases becomes in-
dependent of l0. The limiting values of the current can be
simply estimated by the following arguments.

When l0 is significantly larger than the diffusion length
LT , a value of the current such that the heat generated
Q+ is less than Q+,c, corresponding to a steady front in a
pure NiCr wire, cannot maintain a steady front between
nucleate and front boiling. The value of the correspond-
ing current is Ic ≈ 1.54 A. On the other hand, if I � Ic,
the heat generated is large enough to maintain film boil-
ing throughout a section of the wire made of NiCr. How-
ever, this regime cannot extend through the Cu part of
the wire. This argument shows that I = Ic is the limit
for large values of l0 of the lower curve, below which the
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Fig. 3. Steady front solutions, obtained by solving numerically
equation (4), separating a low temperature, nucleate boiling re-
gion (left) and a high temperature, front boiling region (right),
for values of I slightly smaller than the value for which film
boiling prevails. The maximum temperature in the nucleate
boiling region is equal to the value of the temperature, for
which the nucleate regime ceases to exist (indicated by the
horizontal line).

low temperature phase (nucleate boiling) prevails. This is
consistent with our own numerical results.

To understand the upper value of the current range,
where steady fronts separate the high and low tempera-
ture phases, we consider three examples of fronts, com-
puted numerically by solving equation (4) for the values
of l0 = 0.635 mm, 1 mm and 2 mm and for values of I
slightly smaller than the value of the current for which film
boiling prevails, see Figure 3. Numerically, the transition
is observed to occur when the largest value of the temper-
ature in the low temperature phase is equal to the maxi-
mum value of the temperature before the nucleate boiling
disappears (indicated by the horizontal line in Fig. 3).
The mechanism of transition from nucleate to film regime
when l0 is large is therefore due to a simple disappear-
ance of the low temperature phase solution, and not to a
change in front propagation velocity, as it is the case for
small values of l0.

In this respect, we note that the maximum of the upper
curve in Figures 2a and 2b as a function of l0 actually cor-
responds to the limiting value, separating a regime where
transition occurs via front propagation (for small values
of l0), and a regime where transition is due to to the dis-
appearance of the nucleate state (for large values of l0).

The lower curves in Figure 2 also show a small cusp
for a value of l0 close to 1.6 mm. Figure 4 shows numer-
ically computed steady front solutions separating regions
where nucleate boiling and film boiling regions for a value
of I slightly larger than the value of I shown in Fig-
ure 2, both for a small (l0 = 1.4 mm) and for a large
(l0 = 2 mm) value of the length. The difference between
the two solutions in the high temperature phase (right side
of the figure) can be clearly seen: at small values of l0, the
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Fig. 4. Steady front solutions, obtained by solving numerically
equation (4), separating a low temperature, nucleate boiling
region (left) and a high temperature, film boiling region (right),
for values of I slightly higher than the value of the current
below which nucleate boiling prevails, and for two values of l0,
on either side of the cusp in Figure 2. At small (large) enough
length, the temperature in the inactive region on the hot side
is larger (smaller) than the minimum value where film boiling
exists, indicated by the horizontal line.

temperature in the inactive part of the system is larger
than the minimum value of the temperature, indicated by
the horizontal line, below which the film solution disap-
pears. On the other hand, at larger values of l0, the film
solution cannot be maintained in the inactive region. This
difference in behavior of the high temperature solution is
at the origin of the cusp observed in the lower curve in
Figure 2.

The main result of this subsection is that the stability
of the wire, determined by the motion, or lack of motion,
of fronts separating high and low temperature phases of
boiling, is controlled by different mechanisms, depending
on the value of the length l0. When l0 is small compared to
the thermal length, LT , thermal diffusion dominates, and
the transition from film to boiling occurs by front propa-
gation, as studied in [6]. At larger values of l0, the stabil-
ity of the system rests rather on the existence of various
phases. This possibility had not been investigated in [6].
However, in view of the small value of the thermal length
scale (LT � 1 mm), experimentally realistic situations
correspond to the latter case. Motivated by this remark,
we consider the possible gain in safety in the model sys-
tem, in conditions where the periodicity length along the
wire is larger than the diffusion length.

3.2 Influence of the length of the inactive part

How does the length of the inactive part of the system af-
fects the amount of heat that can be generated, the length
of the active part being given, is the question we address
in this subsection. We concentrate here on values of la
practically accessible experimentally, la � 1 mm, that is,

on values of la which are larger than the values of the
diffusion lengths.

Figure 5 shows the results for three different values of
the active length of the system: la = 1 mm, 2 mm and
4 mm. The figures show, as a function of the length of
the inactive part of the system, li, the value of the inten-
sity of the current above which film boiling prevails (up-
per curve), and below which nucleate boiling dominates
(lower curve). In between the two lines, coexistence be-
tween the two states is observed, in the sense that a front
separating a region of high temperature, undergoing film
boiling, and a region of low temperature, with nucleate
boiling, is stalled. The horizontal dashed line corresponds
to the value of the current Ic, corresponding to the sepa-
ration between the two regimes for a uniform system, with
li = 0.

The values of the current corresponding to the tran-
sition between the three regimes grow monotonously as a
function of li for the three values of la studied. One ob-
serves that the smaller the value of la, the larger the values
of the currents at which the transition occurs. In partic-
ular, at a value of la = 4 mm, the value of the current
below which nucleate boiling is stable is very close to Ic.
However, a significant range of values of the current over
which a front separating regions in the nucleate and in the
film boiling is always observed. In the case of the large
values of la (la = 4 mm), an additional difficulty occurs.
The maximum value of the temperature in the hot parts
of the wire may reach very high values, where the wire
would effectively melt. The part of the upper curve with
the dashed-dotted pattern corresponds to a part where
the hottest spots reach a temperature of 500 ◦C, where
we estimate that irreversible damage would occur.

Figure 5 shows that by alternating active regions with
a given size, la, one may safely increase the output per ac-
tive length of the system. This is already a very positive
result, since it shows that heat generation by the active
parts of the wire can be maintained at a higher level than
in an homogeneous system, without any risk of a transi-
tion to the film boiling, high temperature state with pos-
sibly dire consequences. Figure 5 demonstrates that the
maximum heat released per unit length of the active part
of the wire is ∼75% when the size of the active part is
la = 4 mm, and even higher at lower values of la.

An other way to characterize the heat generated by the
system is to measure the power released per unit length in
the system. In view of equation (5), the heat release per
unit length in the system is simply: Qeff ≡ (ANiCr la +
ACu li)I2/(la + li). This quantity is to be compared with
the maximal value of the heat generated by the system
for a pure active system (li = 0) in a state of nucleate
boiling: Q+,c. Figure 6 thus shows the value of Qeff /Q+,c

as a function of li for the three values of la: la = 1 mm,
2 mm and 4 mm.

These figures demonstrate that for the values of la cho-
sen, there exists a range of values of li, where the heat gen-
erated per unit length is larger than the largest possible
heat flux in a homogeneous system (li = 0), in such a way
that a region in the high-temperature, film boiling phase
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Fig. 5. Stability of the boiling regime as a function the inactive part length, li, the length of the active part of the wire being
fixed: la = 1 mm, la = 2 mm and la = 4 mm as indicated on each graph. The lower continuous line shows the maximum value
of the current below which the nucleate phase is stable. The upper continuous curve shows the value of the current above which
the high temperature, film boiling region entirely invades the system. In between the two lines, fronts separating the low and
high temperature phases do not propagate. The horizontal dashed line shows the critical value of the current below which the
nucleate boiling phase is stable in an homogeneous system (li = 0). For the largest value of la (4 mm), the highest values of I ,
indicated by the dotted-dashed line, correspond to a temperature of the wire estimated to ∼500 ◦C, that would lead to melting
of the wire.

does not tend to invade regions in the nucleate boiling re-
gion. The range of values of li is limited: when li exceeds a
certain value, the output per unit length becomes smaller
than 1, implying that the system cannot generate more
heat than an homogeneous system without being unsta-
ble, in the sense that a region where temperature would
become high (transition to film nucleate boiling) would
invade the whole wire. The largest value of li over which
nucleate boiling is stable, and where the output per unit
length of the system is larger than in the homogeneous
case grows roughly proportional to the value of la.

As a conclusion of this subsection, we have demon-
strated numerically that in the experimentally realistic
case where the length of the active wire is large compared
to the diffusion lengths, separating the heat generating el-
ements by inactive parts does stabilize the nucleate boil-
ing phase. The power output per unit length can even be
larger than in an homogeneously heat generating config-

uration (li = 0), by as much as ∼40%. In this sense, the
predictions of [6] remains always valid, despite the differ-
ent range of parameters, and the difference in the detailed
mechanisms of transition between film and nucleate boil-
ing.

4 Discussions

In this article, we have studied the transitions between
nucleate and film boiling in a very simple model based on
a plausible effective description of the heat removal, with
a simple dependence on temperature. This approximation
reduces the problem to a 1-dimensional reaction diffusion
equation. We have considered a model systems consisting
of heat generating sections, separated by passive regions,
arranged periodically along the wire.
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Fig. 6. Power output per unit of length of the wire, Qeff , as a function the inactive part length, li, the length of the active part
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not propagate. For the largest value of la (4 mm), the higher value of I leads to a temperature of the wire estimated to ∼500 ◦C,
that would lead to melting of the wire; the value of I for which this would happen is indicated by the dotted-dashed line.

One of our main conclusions is that the ratio between
the periodicity length l0 along the wire and the character-
istic thermal length scale LT strongly affects the mecha-
nisms of transition between the fronts separating the high
and low temperature phases of boiling. In the case of small
values of l0/LT , the temperature modulations are rela-
tively weak, and the motion of the front, or lack thereof,
determines the stability of the system. In the opposite
case, where l0/LT is larger than ∼1, the stability of the
system is determined by considerations of existence of the
low or high temperature phases when a given current is
applied.

Numerically, the value of the thermal length LT does
not exceed 1 mm. We have also demonstrated that in the
experimentally realistic case where the length of the active
wire, typically a few millimeters, is larger than the diffu-
sion length, alternating heat generating elements with in-

active elements results in a substantial stabilization of the
nucleate boiling phase. One may even obtain an increase
of the heat output per unit length, without any risk of
transition to the high temperature film boiling regime.

Quantitatively, for the particular problem studied
here, we obtain that (i) the maximum amount of power re-
leased per unit length of the active zone can be increased
by 75% for elements of size la = 4 mm, compared to a
purely homogeneous system, and that (ii) the maximum
amount of power per length can be increased by as much
as ∼40%.

One obvious domain of application of the work de-
scribed here concerns the problem of nuclear safety. The
transition towards the high temperature phase can lead to
a melt down of the core, with possibly very serious con-
sequences. With this particular application in mind, the
possibility to increase the power output per unit length of
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the active zone without jeopardizing safety is of obvious
interest. In this respect, our proposal consists in alternat-
ing nuclear material with inert material in fuel bars [13].
The design of a simpler experiment involving electric
heating, such as the one proposed in this article, is an
important step to validate the ideas put forward here.

Our work was supported in part by a grant from NATO under
the Science for Peace and Security program.
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